Lecture 2: Descriptive Statistics and Data Exploration

Objectives

- To learn how to explore a dataset through graphics, including box-plot, histogram, scatter plot, etc.
- To explore the distribution of a variable, and the inter-relations between two or more variables.

General

☐ Graphics:

Univariate: box-plot, histogram, scatter plot, pi-chart, frequency table

Bivariate: Scatter plot matrix,

panel box-plots (with time-trend), etc.

Summary measures

(See Lecture 03)

Types of Numerical Data

- Nominal data
- Ordinal data
- Ranked data

Discrete (離散型)

- Count data
- Continuous data (連續型)

Parametric (probability) models for different types of data: (Ref: Lecture 06)

Nominal :

Bernoulli and binomial distributions

Example: alcohol drinking (yes or no)

Ordinal:

(Combined- or cumulative-) Bernoulli and/or multinomial,....

Example: risk perception problem

Parametric (probability) models for different types of data: (cont.)

- Count data and Poisson distribution
 Example: mortality rate in vital stat.
- Continuous: (Height, weight, blood pressure...)
 - normal (Gaussian) distribution,
 - gamma distribution,
 - exponential distribution,
- Nonparametric statistics:

for ranked data (Ref: Lecture 12)

Example 1. Relationship between gender and several

variables (1: chi-square test. 2.Source: "A model-based prediction on length of stay for rehabilitated stroke patients of mid-Taiwan," by Chien-Lin Lin et al., CMUH; preprint.)

	女性	男性	P值 ¹	
年齢(歲)				
<50	27 (10.4%)	87 (22.5%)	<.00001	
50-64	77 (29.1%)	133 (34.5%)		
65-79	125 (48.46%)	150 (38.9%)		
>80	30 (11.6%)	10 (4.2%)		
共病症				
二者皆無	98 (37.8%)	149 (38.6%)	0.6532	
只有糖尿病	15 (5.79%)	23 (5.96%)		
只有高血壓	107 (41.3%)	169 (43.8%)		
二者皆有	39 (15.1%)	45 (11.7%)		
物理治療				
無接受	1 (0.4%)	5 (1.3%)	0.2383	
有接受	258 (99.6%)	381 (98.7%)		

Example 2. The distributions of several continuous variables of aged people of Hsin-Yi township (1999~2000)

Source: Cuiwen Chang (2003). Master thesis, Institute of Environmental Health, CMU, Taichung, Taiwan.

Example 3. A longitudinal study of the effects of long-term exposure to lead among lead battery factory workers in Taiwan (1989-1999).

Source: C.-Y. Hsiao, H.-D. I. Wu, J.-S. Lai and H.-W. Kuo. (2001). *The Science of the Total Environment*, 279, 151-158.

Example 3. (cont.) The scatter-plot matrix

Example 4. Different exposure levels versus cotinine

依照菸害暴露分組後,臍帶血可丁寧濃度之群集盒狀圖(以各組可丁寧濃度中位數的大小排序,各組的分類方式參照表3.)

Table. 依照菸害暴露分組後,臍帶血可丁寧濃度平均值與中位數

菸害暴露分組	臍帶血可	臍帶血可丁寧 (ng/ml)			
吸菸狀態	二手菸	人數	平均値	中位數	等級
從未吸菸	無	116	1.544	0.876	2
從未吸菸	只有家中	70	2.108	1.187	3
從未吸菸	只有職場	50	1.501	0.781	1
從未吸菸	家中與職場	26	2.618	1.696	4
已戒煙	無	2	3.699	3.699	7
已戒煙	家中或職場	12	2.855	1.903	6
目前吸菸	無	-		-	
目前吸菸	家中或職場	3	4.204	1.875	5

Cotinine level versus gestational age of pregnant women

Chebyshev's (or Tchebychev's) Inequality

- ☐ Markov inequality: $Pr(|X|>a) \le E|X|/a$ (Prove it! Exercise!)

Proof: Using the Markov inequality with the random variable X being replaced by $(X-\mu)^2/\sigma^2$

Concluding remarks

- □ Box-plot, histogram, and one-way or two-way scatter plot, etc., are very useful tools for data exploration.
 They usually reveal the most important information contained in the data.
- □ Displaying graphics is usually, and should better be, contrasted with a simple analysis (e.g., those using SAS procedures: PROC univariate, PROC corr,...etc.) in order to get a better understanding on the data structure, and also help formulating our statistical and scientific questions.

Homework and exercises

- 1. Prove the Markov inequality
- 2. What is the implication of Chebyshev's inequality on the scatter (or dispersion) of the data?
- 3. Textbook exercises: (pp. 41~54) problems 24, 25.